Skip to main content
The train command enables model training and fine-tuning capabilities.

Usage

praisonai train [OPTIONS] [DATASET]

Arguments

ArgumentDescription
DATASETTraining dataset path

Options

OptionShortDescriptionDefault
--model-mBase model to fine-tunegpt-4o-mini
--verbose-vVerbose outputfalse

Examples

Train with dataset

praisonai train training_data.jsonl

Train with specific model

praisonai train data.jsonl --model gpt-4o

Agent Training

Train agents through iterative feedback loops with the train agents subcommand.

Usage

praisonai train agents [OPTIONS] [AGENT_FILE]

Options

OptionShortDescriptionDefault
--iterations-nNumber of training iterations3
--human-hUse human feedback instead of LLM gradingfalse
--scenarios-sPath to scenarios JSON file-
--input-iSingle input text for training-
--expected-eExpected output for the input-
--output-oOutput directory for training data-
--model-mLLM model for gradinggpt-4o-mini
--storage-backend-Storage backend: file, sqlite, or redis://urlfile
--storage-path-Path for storage backend-

Examples

# Simple training with single input
praisonai train agents --input "What is Python?"

# Training with expected output
praisonai train agents --input "What is 2+2?" --expected "4"

# Training with scenarios file
praisonai train agents --scenarios scenarios.json

# Human feedback mode
praisonai train agents --input "Explain AI" --human

# More iterations
praisonai train agents --input "Hello" --iterations 5

# With agent file
praisonai train agents my_agent.yaml --scenarios scenarios.json

Storage Backend Options

Store training data in different backends:
# SQLite backend (recommended for production)
praisonai train agents --input "Hello" --storage-backend sqlite --storage-path ~/.praisonai/train.db

# Redis backend (for distributed systems)
praisonai train agents --input "Hello" --storage-backend redis://localhost:6379

# File backend (default)
praisonai train agents --input "Hello" --storage-backend file --storage-path ~/.praisonai/train

See Also