train command enables model training and fine-tuning capabilities.
Usage
Arguments
| Argument | Description |
|---|---|
DATASET | Training dataset path |
Options
| Option | Short | Description | Default |
|---|---|---|---|
--model | -m | Base model to fine-tune | gpt-4o-mini |
--verbose | -v | Verbose output | false |
Examples
Train with dataset
Train with specific model
Agent Training
Train agents through iterative feedback loops with thetrain agents subcommand.
Usage
Options
| Option | Short | Description | Default |
|---|---|---|---|
--iterations | -n | Number of training iterations | 3 |
--human | -h | Use human feedback instead of LLM grading | false |
--scenarios | -s | Path to scenarios JSON file | - |
--input | -i | Single input text for training | - |
--expected | -e | Expected output for the input | - |
--output | -o | Output directory for training data | - |
--model | -m | LLM model for grading | gpt-4o-mini |
--storage-backend | - | Storage backend: file, sqlite, or redis://url | file |
--storage-path | - | Path for storage backend | - |
Examples
Storage Backend Options
Store training data in different backends:See Also
- Eval - Evaluation and testing
- Storage Backends - Pluggable storage backends

