Skip to main content
Deploy your agents as APIs, web apps, or serverless functions to share with others.

Deployment Options

Local Script

Run directly on your machine

Web API

Flask, FastAPI, or similar

Serverless

AWS Lambda, Cloud Functions

Built-in UI

PraisonAI’s Chainlit interface

Quick Start: Built-in UI

The easiest way to deploy with a chat interface:
pip install praisonai
praisonai ui
This launches a Chainlit-based chat interface for your agents.

Web API with FastAPI

from fastapi import FastAPI
from praisonaiagents import Agent

app = FastAPI()

# Create agent once at startup
agent = Agent(
    name="SupportBot",
    instructions="You are a helpful support agent"
)

@app.post("/chat")
async def chat(query: str):
    response = agent.start(query)
    return {"response": response}

# Run with: uvicorn app:app --reload

Web API with Flask

from flask import Flask, request, jsonify
from praisonaiagents import Agent

app = Flask(__name__)

agent = Agent(
    name="SupportBot",
    instructions="You are a helpful support agent"
)

@app.route("/chat", methods=["POST"])
def chat():
    query = request.json.get("query", "")
    response = agent.start(query)
    return jsonify({"response": response})

# Run with: python app.py
if __name__ == "__main__":
    app.run(port=5000)

Serverless (AWS Lambda)

import json
from praisonaiagents import Agent

agent = Agent(
    name="ServerlessAgent",
    instructions="You are a helpful assistant"
)

def lambda_handler(event, context):
    body = json.loads(event.get("body", "{}"))
    query = body.get("query", "")
    
    response = agent.start(query)
    
    return {
        "statusCode": 200,
        "body": json.dumps({"response": response})
    }

Environment Variables

Always use environment variables for API keys:
export OPENAI_API_KEY=your_key_here
import os
from praisonaiagents import Agent

# API key is automatically read from environment
agent = Agent(instructions="You are helpful")
Never hardcode API keys in your code. Use environment variables or secrets managers.

Scaling Considerations

Rate Limiting

Control API usage and costs

Caching

Cache common responses

Error Handling

Handle API failures gracefully

Monitoring

Track usage and performance

Best Practices

Verify agent works correctly with various inputs
Never hardcode API keys or secrets
Wrap agent calls in try/except blocks
Track API calls and costs

Course Complete! 🎉

You’ve learned how to:
  • ✅ Create AI agents with instructions
  • ✅ Add tools for extended capabilities
  • ✅ Enable memory for conversations
  • ✅ Add knowledge from documents
  • ✅ Build multi-agent teams
  • ✅ Create specialized agents
  • ✅ Deploy agents for real use

Next Steps